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and 
Dublin Institute for Advanced Studies, School of Theoretical Physics, Dublin 4, Eire 

Received 25 November 1976, in final form 1 February 1977 

Abstract. We prove that if Fd = -Fba is a bivector field on Minkowskian space-time 
satisfying the wave equation, CIF, = 0, and the derivatives of Fd satisfy certain smoothness 
and asymptotic conditions, then one can construct from Fd a bivector which satisfies 
Maxwell’s vacuum field equations which, from another point of view, are equivalent to 
polarization conditions. The relationship between this result and the initial-value problem 
is solved by two different techniques. We also provide the extension of these results to the 
linearized Einstein field equations in uacuo. 

1. Introduction 

While a substantial amount is known concerning the initial-value problem for the scalar 
wave equation in Minkowskian space-time (see Pounder and Synge 1955, Courant and 
Hilbert 1962, John 197 1 and references therein) the special problems encountered 
when dealing with the analogous problem for the vacuum Maxwell or linearized 
Einstein field equations have received little attention (cf Courant and Hilbert 1962, 
p 647). In studying this problem we found that the essential ingredient was the fact that 
the field (the Maxwell field§ Fab or linearized Einstein field Rabcd) in each case must 
satisfy the wave equation)( 

md = o  and n R a b c d  =o.  (1.1) 

Fab,b = 0, F[ab,c] = 07 (1.2) 

R b c  = R a b c a  = 07 R a b [ c d , c ] =  0. (1.3) 

This is, of course, a consequence of the vacuum Maxwell equations 

and the vacuum linearized Einstein equations 

§ Latin indices run 1, 2, 3,4. We choose coordinates Xa for which ( X I ,  X 2 ,  X,) are rectangular Cartesians 
and X ,  = it (units are chosen for which c = G = 1) so that the metric tensor of Minkowskian space-time is the 
Kronecker delta 6&. The Einstein summation convention is used and square brackets denote antisymmetri- 
zation. 
(1 At this stage we merely suppose Fd and Rhd to have the algebraic symmetries 

F d  = -Fk,  = &dab = -Rtacd, Rackdl = 0, 
thus we include the Bianchi identities (the second of (1.3)) in the set of field equations, to preserve the 
symmetry between (1.2) and (1.3). 
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However it raises the question, to what extent the content of (1.2) and (1.3) is embodied 
in (1.1). We provide an answer to this question in § 2 by proving that if Rk, Fab,b and 
their first derivatives satisfy certain asymptotic and smoothness conditions then (1 .1)  
imply that there exist tensor fields (which can be constructed out of Fab and Rabcd) which 
satisfy (1.2) and (1.3). In 0 3 we solve the initial-value problem for the Maxwell 
equations following a method used by Pounder and Synge (1955) for the scalar wave 
equation, which utilizes a complex wavefunction (an alternative technique is described 
in appendix 2). We indicate how the procedure is also used in solving the initial-value 
problem for the linearized Einstein equations. The central role being played by (1.1) 
and the necessity for the theorem proved in § 2 will then be obvious. In § 4 we describe 
how (1.2) and (1.3) may be interpreted as polarization conditions and thus the content 
of Maxwell’s or of the linearized Einstein equations, above and beyond the wave 
equation (1 .  l), is clarified. The paper ends with a discussion of our results in § 5 .  

2. Two useful theorems 

The difficulty in passing from (1.1) to (1.2) and (1.3) without putting unreasonable 
constraints on Fab and R&d is illustrated by the following two theorems. In them we 
investigate the effect of placing asymptotic restrictions on Fab,b and Rbc which have been 
used by Synge (1965, p 412), in the bivector case, to derive a variational principle from 
which one can obtain Maxwell’s equations. 

Theorem 1 .  Let Fab = -Fba be a bivector field on Minkowskian space-time with 
continuous derivatives existing at least to order three. Let Fab,b and its first derivatives 
vanish at least as fast as r-l-a (a > 0) on every null-cone at every event in Minkowskian 
space-time. If, in addition, Fab satisfies the wave equation, Wab = 0, then we can 
construct out of Fab a bivector Kab which satisfies Maxwell’s vacuum field equations 
(1.2). 

Roof. Under the stated smoothness and asymptotic conditions (cf Synge 1965, p 412) 
Synge has proved that Fab may be decomposed into 

where 

Hab,b = 0, K[ab,c] = 0. 

Hence 

Now let F& satisfy the wave equation so that 

It follows from (2.2) that 

[7Kob,b = 0. (2.5) 

Now invoking a well known theorem based on Kirchhoff’s formula (cf Fock 1964, 
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p 365) we conclude from (2.5) and the asymptotic conditions on F&,b 

Kd,b = 0, (2.6) 

and thus, by (2.2) and (2.6), Kd satisfies the Maxwell equations (1.2). 

The method of constructing Kd out of Fa6 is given explicitly in Synge’s proof of the 
decomposition (2.1) (Synge 1965, p 412). 

We may extend this result to cover the linearized Einstein field equations (1.3) as 
follows. 

Theorem 2. Let Rkd be a tensor field on Minkowskian space-time having the algebraic 
symmetries given in the second footnote on p 899, having continuous derivatives up to 
third order and having Ra, and its first derivatives vanish at least as fast as r-’-= (a > 0) 
on every null-cone at every event in Minkowskian space-time and (Ra -$,Rdd),, = 0.  
If, further, Rlrbcd satisfies the wave equation, m & d  = 0, then there exists a K&d which 
can be constructed from a knowledge of Robed and satisfies the linearized Einstein field 
equation ( 1.3). 

Proof. Under the stated asymptotic and smoothness conditions we prove, in appendix 1, 
a similar result to that of Synge quoted in theorem 1, namely, that Rabcd may be 
decomposed into 

Rlrbcd = Habcd 4- Kobcd,  (2.7) 

Ha =Hha = 0, K a b [ c d , e ]  = 0. (2.8) 

R k  = K h  E Kaka, Rab[cd.e] =Hab[cd ,e ]*  (2.9) 

m a b c d  = - m a b c d ,  (2.10) 

OKk = 0. (2.11) 

where 

Hence 

Now let Rabcd satisfy the wave equation so that 

from which, using (2.8), we have 

Again, we invoke a well known theorem based on Kirchhoff’s formula (Fock 1964, 
p 365) to conclude from (2.1 l), on the basis of the asymptotic conditions assumed on 
Rk, that 

Ka=O.  (2.12) 
Hence, by (2.8) and (2.12), K- satisfies the linearized Einstein field equations (1.3) 
and K A d  is constructed out of Robed in the manner of appendix 1. 

3. The initial-value problem 

We shall here describe the solution of the initial-value problem for Maxwell’s equations 
(1.2) and outline a similar approach for the case of (1.3). We follow the point of view of 



902 P A  Hogan and D H Tchrakian 

Pounder and Synge (1955) by first introducing the complex wavefunction 

w = s-l, S = (X, -a, -ip,)(X, -a, -ip,), (3.1) 

where a,, Pa are fixed four-vectors and pa is time-like (pd, = -p2) and, in fact, to 
siniplify matters we choose pa = (0, ip). The wavefunction (3.1) vanishes at large 
distances from the coordinate origin but is singularity free (it is discussed in Synge 1965, 
p 360). Consider the tensor 

Qabc = wFab,c - W,cFnb* (3.2) 
This has the property that 

Q=bc,C = w w d ,  (3.3) 
which vanishes (almost everywhere) if and only if Fd satisfies the wave equation. This 
provides us with a useful conservation law with which to solve the initial-value problem 
for a bivector field Fd satisfying the wave equation (an alternative approach is 
described in appendix 2). In doing this, since Maxwell’s equations (1.2) imply the first of 
(1.1) we are, in fact, solving the initial-value problem for a wider class of bivector fields 
than Maxwellian fields. Theorem 1 of the previous section illustrates how one might try 
to recover Maxwell’s equations without putting unreasonable conditions on Fd. 

Since the treatment which follows of the initial-value problem parallels the argu- 
ment of Pounder and Synge (1955) we merely sketch the argument here. The reader 
may refer to Pounder and Synge for details. 

Applying Green’s theorem to Qdc,c = 0 in the four-volume indicated in figure 1 we 
obtain 

(3.4) 

Figure 1. The four-volume to which we apply Green’s theorem is that bounded by the 
space-like three-flat t =a between B and E and the three-surface BCDE. r is the past 
null-cone with vertex at the event A(a,). 

Multiply this equation by i, take the real part and then the limit p + 0. We then obtain 

lim Re( i [=a - aw Fab du) = t;’” Re[ i IBcDE ( gFd - w -) aFd du]. 
B -4 at -0 an (3.5) 

With w given by (3.1) we can easily prove that the left-hand side of this equation is 
simply F,b evaluated at A(a,). We can also see that the only contribution to the 
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right-hand side of (3.5) comes from the intersection of the past null-cone r (see figure 1) 
and the three-surface BCDE (this is a manifestation of Huygen's principle). Thus (3.5) 
gives 

Evaluating the integral in the manner of Pounder and Synge we arrive at the Kirchhoff 
formula 

where r2  = (X,  - a,)(X, -a,), ( k  = 1,2,3), 7 = a - f with T~ = a - to and 

Pub = (4T)-' Fab do, Qab = ( 4 ~ ) - '  j' % do, (3.8) I 
where dw is the element of solid angle on a two-sphere r = constant. Equation (3.7) 
expresses the solution to the initial-value problem for the first of (1.1) in that it 
expresses Fab at A in terms of Fa6 and dFab/at given on the initial space-like 
hypersurface t = to. 

Theorem 1 of the previous section establishes conditions under which a bivector 
K a b ,  constructed from Fah, will satisfy Maxwell's equations. Being in possession of 
equation (3.7) we may now ask to pass from it to a solution of the initial-value problem 
for Kab. This can be achieved as follows: from (2.1) we have 

K a b ( a r ,  ia) = F a b ( a p ,  i a > - H a b ( a p ,  ia) ,  (3.9) 

and, by (2.4), Hob satisfies 

a H a b  = habt hub = -OKa,. (3.10) 

By Synge's (1965) construction of Kab we have in addition 

hub = Fbc,ca - Fac.cb* (3.11) 

By the first of (2.3) in conjunction with (2.6) this expression vanishes under the 
conditions of theorem 1. Hence Fab and Kab differ by a solution of the homogeneous 
wave equation, with vanishing divergence. If we now further assume that 

Hub = F d  -K& =O(r-'-O), a >0, (3.12) 

on every null-cone at every event in Minkowskian space-time and that first derivatives 
of Hab behave similarly then it follows that Hab = O  and by (3.9), (3.7) represents a 
solution to the initial-value problem for the Maxwellian field Kd. 

An exactly similar treatment may be used for the tensor field Rubc& We define the 
tensor 

(3.13) Tabcde = WRabcd,e - W,eRabcd, 

from which we obtain 

Tabcde,e = W m R a b c d ,  (3.14) 

and this vanishes (almost everywhere) if and only if Rdcd satisfies the wave equation. 
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Solving the initial-value problem as above for Rabcd(cxa) we obtain 

(3.15) 

where 

As in the Maxwellian case we have here solved the initial-value problem for a wider 
class of fields than vacuum linearized Einstein fields while theorem 2 of the previous 
section illustrates how one might recover a linearized Einstein field Kabcd. The solution 
of the initial-value problem for Khd is obtained from (3.11) and the results of theorem 
2 in exactly similar fashion as in the Maxwellian case detailed above for Kab. 

4. Polarization conditions 

In this section we analyse the physical content of the Maxwell and vacuum linearized 
Einstein equations (1.2) and (1.3), over and above the equations of wave propagation 
(1.1) of those respective fields. 

Firstly we will cast (1.2) and (1.3) into a form that manifests their formal equivalence 
and then we will trace them back to the same source-that they are both nothing other 
than polarization conditions on the wave-propagating fields (1.1). 

Following the procedure in Tchrakian (1975) we express the two fields Fab and Rabcd 
as 

where the indices p ,  Y run over 1, 2, 3 in three-dimensional Euclidean space. The 
rotational tensors E,, and H,, are symmetric and traceless and the symmetries and 
explicit expressions for the coefficients t?Eb and are given in Tchrakian (1975, 
equation (3)). 

Substituting Fab and Rkd into (1.2) and (1.3), we get the following ‘Maxwell 
equations’: 

V . E = O ,  

V . H = O ,  
V x E = -aH/at, 

v x H = aE/at, 

and 

(4.3) 

(4.4) 

where the notation in (4.4) is that of Tchrakian (1975). Equations (4.3) and (4.4) 
manifest the formal equivalence of (1.2) and (1.3). 

At this point we mention that (4.4) are exactly equations (1 1’) of Tchrakian (1973, 
which were said to be derived from the contracted form of the Bianchi identities, i.e. 

Rab[cd.a] = 0, (4.5) 
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while in our case they are derived from (1.3) itself. There is no discrepancy here, as (4.4) 
and (4.5) can readily be verified, using (4.2), to be equivalent in the case of vacuum 
linearized Einstein fields. 

It is clear that vacuum ‘Maxwell equations’ similar to (4.3) and (4.4) exist also for 
tensor fields of arbitrary rank. 

The origin of both (4.3) and (4.4) are the polarization constraints on the wave (1.1). 
To arrive at this conclusion we have to take recourse to the particle-wave duality, 
whereby a wave propagating at the speed of light is interpreted as a massless particle. 
Now it is well known that massless particle wavefunctions must satisfy what are called 
‘unitarity constraints’ (cf Zwanziger 1964, Weinberg 1965, Niederer and O’Raifear- 
taigh 1974) whose function is to express that helicity is the physical observable, and of 
course the classical analogue of helicity is the polarization of the wave propagating at 
the speed of light (Jackson 1975, pp 273, 333). 

There are many diverse but equivalent expressions for the unitarity conditions 
(Jackson 1975) and the most suitable in our notation is 

Wa+ = @a+, (4.6) 
where W, = &&dP&d is the Pauli-Ldbanski vector, pa is the four-momentum of the 
massless particle and h f c d  is the generator of Lorentz transformations in the representa- 
tion carried by the wavefunction or field I,+ (cf Weinberg 1975), e.g. I,+ can be Fab or 
Rabcd, and A is the helicity. 

The condition (4.6), with the four-momentum replaced by space-time derivatives, 
can be shown to lead (Niederer 1975, Dunne 1976) to the Bianchi identities of (1.2) and 
(1.3) or to the ‘Maxwell equations’ (4.3) and (4.4). 

We can thus see that a wave field propagating with the speed of light will satisfy 
certain polarization constraints if it satisfies equations (1.2) and (1.3). 

5. summary 

We have seen in 0 3 how the problem of passing from (1.1) to (1.2) and (1.3) arises in 
solving the initial-value problem for (1.2) and (1.3). Using a result due to Synge we 
have studied this passage in Q 2. We considered placing the same asymptotic conditions 
on Fd,b and Rbc as Synge finds necessary to place on Fab,b in order to obtain a variational 
principle which will yield Maxwell’s equations. We then find that (1.1) allow us, not to 
pass directly to (1.2) and (1.3) but to construct tensor fields K d  and Kabcd out of Fab and 
Rabcd respectively which do satisfy (1.2) and (1 -3). In § 3 we have sketched a solution to 
the initial-value problems for (1.1) and have described how one passes from these 
solutions to the solutions of the initial-value problems for Kd and Kabcd. The physical 
content of (1.2) and (1.3) over and above (1.1) is studied in 0 4 and we conclude that 
(1.2) and (1.3) are equivalent to polarization conditions on the wave fields (1.1). 

Finally, we may point out that the method of Lichnerowin (cf Adler eta1 1965) for 
studying the initial-value problem for the Einstein or Einstein-Maxwell equations may 
also be applied to the equations we have been discussing in this paper. In his method 
one quotes Fd and/or gd and agd/at on the initial hypersurface and then one uses the 
field equations to obtain higher-order time derivatives on the initial hypersurface of 
these field quantities in terms of the given data. The field at a time to the future of the 
initial hypersurface is obtained by Taylor expansion of the field quantities about the 
initial hypersurface. Some of the field equations impose constraints on the allowable 
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initial data. The method we have described in this paper has the advantages that the 
field is determined: ( a )  by an explicit formula in terms of the initial data; and (b) at any 
time to the future of the initial hypersurface (whereas the Lichnerowicz approach may 
be restricted by the region of convergence of the Taylor expansion). The disadvantage 
in our approach is brought about by not solving the initial-value problem directly for 
(1.2) and (1.3) but by proceeding via the wave equations (1.1). Then the passage back to 
(1.2) and (1.3) requires asymptotic conditions to be placed on the fields which do not 
appear in the Lichnerowicz approach. 
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Appendix 1 

Let Robed satisfy the algebraic symmetries in the second footnote on p 899 and the 
asymptotic and smoothness conditions of theorem 2 .  Let = yba  be such that Y2b.b = 0 
where -&= ?ab --&bycc. Define 

Kabcd = &3/ac,bd + Ybd,ac - yad,bc - ybc,ad) ,  (A. 1) 

Kab[cd,e]  = 0. (A.2) 

1 

then 

Now define 

then, in particular, 

ec = RE - KE, 
and 

= R = 0 

since K&,c = 0. We may also write (A.4) as 

Wk = R & + o r % ,  (A.6) 

Ely$= -2R&, YLC = 0. 6 4 . 7 )  

and thus if Hbc = 0 we have the following equations for 'yab given R&d : 

Under the conditions on Rhd of theorem 2 these equations have a solution y a b  and 
hence, by (A.l), &kd exists and consequently, by (A.3), H&d exists. 

Appendix 2 

We describe here an alternative method (cf John 1971) for solving the initial-value 
problem for Maxwell's equations. 
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Let 

Pab(r ,  it) = ( 4 ~ ) - '  Fab (a, +r&~,  it) 0. 
6WEW = 1 

Assuming Fd to be continuous it is clear from (A.8) that 

lim Pd(r, ia) = Fd(crr, ia). (A.9) 
r-0 

Now following a procedure clearly outlined in John (1971) one can prove that 

provided 

CIF& = 0. 

(A.lO) 

(A. 11) 

We may write out the general solution to the two-dimensional wave equation (A. 10) as 

(A.12) 

and taking the limit of this indicated in (A.9) we reproduce the expression (3.7) for 
&,(a,, icr). Again we see clearly here that only the wave equation (A. l l )  is used, and 
this is a consequence of, but not equivalent to, the Maxwell equations (1.2). 

Similarly we may take 

Pabcd(r, i t )  = (477)-' Rabcd (ap + rep, i t)  do,  (A.13) 

and we have 

lim P&d (r ,  icr ) = Rhd (a,, icr ), (A. 14) 
r - rO 

and we can prove that rP&d must satisfy the two-dimensional wave equation (A.10) if 
Rhd satisfies 

m & d  = 0. (A. 15) 

Writing out the general solution to the two-dimensional wave equation and taking the 
limit indicated in (A.14) we can reproduce the formula (3.11). 
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